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Liquids and Their Interfaces

So far we have considered photons, electrons, phonons, and gas molecules. The transport
processes of these energy carriers have many common characteristics and thus we have
treated them in parallel. Transport in liquid is considerably more difficult to deal with,
Compared to gases, liquids have molecules are closely packed and have short-range
interactions, while compared to crystalline solids, liquids lack the periodicity of crystal
structures. For these reasons, we cannot develop a parallel treatment for transport in
liquids as we have done in previous chapters for other energy carriers. This chapter
provides a brief description of transport processes in liquids and near the interfaces
between liquids and their surrounding media, such as liquid—solid, liquid-liquid, and
liquid—vapor interfaces.

We will start with a brief introduction to the metho
in bulk liquids. Historically,
kinetic theory,

ds used to deal with transport
some of the earliest approaches were attempts to modify
] particularly the Boltzmann equation, to include, for example, the finite
size of liquid molecules and the potential interaction among molecules. The success of
rr}odiﬁed kinetic theories, however, is rather limited. Another line of development was
pxoneered by Einstein (1905) in his studies of the Brownian motion of particles in a
.llquid. Brownian motion was generalized by Langevin, and further developed by others
in the linear response theory (Kubo et al., 1998). With the development of computational
tools, the study of liquids has gradually shifted to computer simulations based on the

lmear. response theory. In section 9.1, we will discuss the modification of the Boltzmann
equation by Enskog, Einstein’s Brownian motion theory,

The linear response theory will be discussed in chapter 10.
From the discussion on transport in bulk liquids,

and the Langevin equation.

; we will see that the trans-
port processes involve not only kinetic energy exchange but also potential energy
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exchange. For nanoscale liquid transport, thg interfac'ial.force and .the inte‘rfacxai

tential may be very different from those in bulk.hqmds, ‘and this can impac
L transport processes. We thus spend a large fraction of this chapter d1scu§51ng
:E: irrlterflz)acial forces and interface potential between l'iqu.ids and the%r §un:fund1ngsé
Regretfully, since most studies of transport between lqu}dS and .thelr mrtle a.cetse ;;; ‘
pased on computer simulations of sma}l dgmams, general mformanog on how mi e
cial forces and potentials impact the liquid transport processes remains scarce
htﬁ:ltt‘i;: end of this chapter, we will discuss some size eff.ects on the thermzdynilnilg
properties at liquid-vapor interfaces. Th.ese eff(?cts are obtamed‘ from them:o l)lzlrllslo
and are, in general, well understood. With the. increasing aFtentlon to nar.l(oi ec = niz;;
these effects have new applications. Computational simulations also provide so

insights into these phenomena.

9.1 Bulk Liquids and Their Transport Properties

9.1.1 Radial Distribution Function and
van der Waals Equation of State

We often regard liquids as structureless. This is not exactly tI'L;JC! Surr(iuil?mrgas(\j/zz
i iti etely
iqui les and their positions cannot be comp
liquid molecule are other molecu . e
ite si liquid molecule determines tha
because (1) the finite size of the ' el
in its i i nding, and (2) these few mole more 0

other molecules in its immediate surrou : e o
Jess stabilized by the interatomic potential. One measure of the structure of a liq

the radial distribution function, g(r), which is defined as

the number of molecules with centers petween ©.1)
4ring(rydr = r and r + dr measured relative to a specific molecule

where n(= N/V)isthe average particle number density. Typical distribut‘:doin;1 of (5; ()rf)ofrozr1
liquids, crystalline solids, and gases are shown in ﬁgure 9.1. ;hesfei(r;tn%epeak rge Ll
liquid represents the coordination shell of nearestln(elz'lgh.t;orts‘, ! c;unction S
i dial distributio
t neighbors, and so on. The fa : ( —"
gllz 22::;;?;150f thi atom under consideration with the surrqundmg ator;;. Illi%uatoms
indicates that after a few intermolecular distances tbe correlation betge;) Aq(Boon -
totally disappears. For example, in liquid argon, thlS. occurs aF arou'ré L eoontaline
Yip, 1980). In contrast, the radial distribution function g(r) is peri
? d is equal to one for ideal gases. . . _—
SOhC()i;: Itllseli; tc%le radial distribution function g (r) is in the construction of theeq

tion of
states (Carey, 1999). From chapter 4, egs. (4.14) and (4.15), we see that the equation

i iti ion Z, which depends on the
nonical partition function Z, :
e S P we can divide its energy into the sum of

iquid system, .
tes of the system. For a liqui : de 1t e
?:;elzlgr?etsit: and potenti,al energy. It is easy to write down the kinetic energy exp

e\/ely mo e(:llle mn l] [+] (l] (l SyS'ﬁ N l e adla] d Stllbutl() cal be used 0 cons an
h 1 n n to con truct
1 1 .

epreSSIOIl Ot the pOtCntlal CneIgy. } Or CXaIIlple, 1f t.he aVeIage pOteIltlal ener gy be[ een
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A

RADIAL DISTRIBUTION
FUNCTION g(r)

RADIAL DISTANCE r

Figure 9.1 Typical behavior of the radial distribution function of liquids, crystalline solids
(one-dimensional), and gases.

two molecules as a function of their separation r is ¢ (r), the total potential energy of an
N-particle system is then

o0
Dy = g/4nr2¢(r)ng(r)dr 9.2
0
The integral represents the potential interaction of one particle with the rest of the
particles. N/2 includes all the particles in the system, where the factor % accounts for
the sharing of ¢ between two particles. One example of the potential distribution function
is the Lennard-Jones potential between two molecules [see eq. (3.7)],

=2~ 2]

where ¢ and o are the Lennard—Jones potential parameters (table 3.1). We make a further
assumption on the radial distribution function,

) = 0r<D>D
= 1 r>D G

which means that there is no other molecule within a distance D surrounding the
molecule, and outside D the other molecules are not correlated to the molecule. This
is essentially a hard-sphere model for a molecule of diameter D. Under this model,
eq. (9.2) can be expressed as

aN?
Dy = ——
N = .5)
where
o0
a=-2x / r¢(r)dr (9.6)
D
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Increasing
Temperature

Figure 9.2 Isotherms
predicted by the van der
Waals equation. In region

) D-E, the pressure increases
] C 5
I N with increasing volume,
/ e .
g LN % which is unlikely to occur.
@/ nphysical &
]

Real systems avoid this
—  region by a phase transition
\Y% directly from A to B.

<%

the negative sign ensuring that a is positive since the attractive part of the Lennard-Jones
potential is negative. With eq. (9.5) for the potential energy, the canonical partition
function can be derived for such a system (see, for example, Carey, 1999; Kittel and
Kroemer, 1980). We will skip the details of the derivation and give the final canonical
distribution function (the Helmholtz free energy) as

3 h?
F(T,V,N)=—NkpT {In(V —=BN) — ~In| ——
2 2nmkgT
N%a

+/<BT(N1nN—N)—T 9.7)
The above expression is an extension of eq. (4.28) for an ideal gas to a hard-sphere fluid.
The extension includes two parts. One is the addition of the potential energy term we
have just obtained. The other is to replace the volume in eq. (4.28) by (V — BN), where
B is the volume of an individual molecule. This correction accounts for the finite size
of the molecules. From the Helmholtz free energy, the equation of states can be derived

from p = —(0F/9V)r n as

NigT  aN?

_ Nepl'  aN~- 9.8
P=Vy BN~ V2 S

The above equation is the celebrated van der Waals equation of states. Compared to the
ideal gas equation of states, we see that BN accounts for the volume of the molecules
and that the last term on the right-hand side represents the potential energy contribution
to pressure.

The van der Waals equation of states is an idealized model that can describe both
the vapor and the liquid phases (Goodstein, 1985). Figure 9.2 shows the isotherms of
the equation of states on a p—V diagram. There exists a critical temperature below
which the p—V curves have a local minimum (point D) and a local maximum (point E).
Between the two extrema (DE), the pressure increases as the volume expands. This is
an unphysical result. Real systems overcome this by a sudden change in volume to go
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from point A to point B of the curve, which corresponds to the evaporation of liquid
into vapor. Other familiar curves, such as the saturated liquid and saturated vapor lines,
as well as the critical point, are also marked in the figure.

9.1.2 Kinetic Theories of Liquids

Given the great success of the Boltzmann kinetic theory for gases and, as we have seen,
for electrons and phonons, it was natural to modify the Boltzmann equation for liquid
transport (Enskog, 1922; Chapman and Cowling, 1953; Rice and Gray, 1965; Kohler,
1972). The Boltzmann equation applies only to dilute systems of particles, assuming that
these particles occupy no volume and that their interactions are limited to the instant
of their collision, which is much shorter than the time spent by the particles moving
freely before and after the collision. Liquid molecules clearly violate these assumptions,
The molecules in a liquid are closely packed. While the repulsion force between the
molecules is strong and similar to that between gas molecules, the long-range attraction
force can no longer be neglected because such a force is the very reason that holds the
molecules together in the liquid.

In chapter 6, we explained that the Boltzmann equation is a one-particle distribution
function approximation to the general Liouville equation. In this section, we continue
to use f to denote this one-particle distribution function and 7@ to denote the two-
particle distribution function. The one-particle distribution function is an average of the
N-particle distribution function f™)(z, r;, p;) in the Liouville equation over the rest of
the (N — 1) particles, eq. (6.4), which is repeated here,

N!
ft,r,p) = m/~~~/f<N’<t,rf,p,-)drz...drNdpz...de 9.9)

We will drop the subscript 1 from here on. One can also define a two-particle distribution
function

N!
f(z)(t,r,p,rz,pz)=m/mff(N)(t,ri,p,-)drg...drNdp;;...de
(9.10)

This two-particle distribution function describes the joint probability distribution of
finding particles 1 at (r, p) and particle 2 at (r5, po). Similarly, higher order distribution
functions can also be defined. From the Liouville equation, a hierarchy of equations
for each of the distribution functions can be derived (Liboff, 1998). The equation of
the lower order will involve also the distribution of higher orders. For example, the
governing equation for the first order distribution function in its general form, is

af F
¥+v.vrf+’-n-.vvf:3(f,f<2>) (9.11)
The left-hgnd side comprises the familiar terms in the Boltzmann equation and the right-
hand side is a generalized scattering term, which is a function of f and f®. To close
this equation, £ must be related to f. Similarly, governing equations for higher order
terms must be truncated by introducing closure relations, as in turbulence modeling.
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Figure 9.3 The difference between the
Boltzmann kinetic formulation (a) and the
Enskog formulation (b). In the Boltzmann
formulation, heat flows across the interface
at x only when the molecules (such as A)

o | .
: - °© © O o ©  goacross the interface. Molecules such as
Rgl ® 5 A O‘:/v ® B do not contribute momentum and heat
e ko . » o Y ©  flux across x. In the Enskog model, even
B poe i ® though B does not go across x, it collides
X B h with C and momentum and energy are

transferred across the interface. This
transfer occurs at a distance D and can
be considered as due to the potential
interaction between B and C.

The scattering integral in the Boltzmann equation, eq. (6.20), is based on the following
assumption,

FP@ e pra ) = £, 5, p) (2, 12, p2) (9.12)

This expression means that no correlation exists between the position and the momentum
of the colliding particles; this is called the molecular chaos assumption. For liquid, the
long-range attraction force between molecules creates correlations among molecules
and thus the above assumption is no longer valid. One approach to address this problem,
taken by Rice and Allnatt (1961), is to derive a governing equation for f@. The Rice-
Allnatt equations and their solutions for even simple cases are very complex and will
not be elaborated on here (see Rice and Gray, 1965). An earlier approach, taken by
Enskog (Enskog, 1922; Chapman and Cowling, 1953, Velarde, 1974), is more intuitive
and will be briefly discussed here. The Enskog model assumes that the liquid molecules
are hard spheres of diameter D, and neglects long-range attracting forces. However,
such long-range interactions are implicitly included in the Enskog model. Referring to
figure 9.3, in the Boltzmann equation model, momentum and energy transfer across an
imaginary plane x occurs only when a molecule, such as A, goes across the plane. In
the Enskog model, however, momentum and energy transfer across plane x occurs in a
collision between molecules B and C, even if molecule B does not go across this plane.
Because of the finite diameter of the molecules, this latter process occurs when the two
molecules are within a distance D in the Enskog hard sphere model. Enskog assumed that
the two-particle distribution is related to the one-particle distribution function through
the radial distribution function g:

F@@,r,p,r2, p2) = (1,1, p) f(t, 12, p2)g(IR12)) (9.13)

where R{; = r; — ry. In addition, due to the finite size of the particles, they do not
occupy the same location at the moment of collision but are separated by a distance D.
The Enskog equation may be written as (Chapman and Cowling, 1953; Kohler, 1972;
Ferziger and Kaper, 1972; Velarde, 1974)

F
L i e = V=8 9.14)
ot m
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with the following expression for the scattering term,

S = // D*Q - (vo — v)dQ d°pa

o
1 S ~
-g ( r— EDQD F@Ep)f (tr = DR, pz)] (9.15)

where the superscript ’ represents properties after collision, Q is the unit vector con-
necting the centers of the two colliding spherical molecules and the integration of 4§
means over the entire solid angle formed between the two molecules. The first term
inside the square brackets represents the in coming scattering into (r, p) and the second
term is the out going scattering. From momentum conservation, p’ and P, are related to
p and p> by

1 ~ ~
r+ EDSZD f.r.p)f@t.r+ DR, py)

p'=p+QUp2-p) e 2] p;=p2—Lp2—p) o] 9.16)

Solution of the Enskog equation leads to the following expressions for the visco-
sity and thermal conductivity of liquids (Kohler, 1972; Ferziger and Kaper, 1972;
Velarde, 1974):

,LLO 4 3 2 3
=" |1+ —mnD3(D =
WE g(D)[j + 157111 g( )] + 5I'I 9.17)
I F e 2+3'<Bn
&= D) 5 & T (HLEY
_ i«/ﬂmKBT
=1 o @:19)
25 /mwmigT 3k
ko= X208 (9.20)
32 D3x 2m
4
M= 5\/7rm/<BTnzD4g(D) 9.21)
(1= 11nb)9)
T 1 —=2nb )
2
b= §HD3 (9.23)
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where the su.bscript E represents Enskog results, and ko and pq are the kinetic theory
results for dilute gases [eq. (6.68a)]. These expressions can be written in normalized
form as

WE 1

— =bn|-+08+0.76

%o (y y) (9.24)
kE—-b (1+12+076

— =bn|- ; .

ko y y> (9.25)

where y = nbg(D). In using the above expressions to calculate the transport coefficient,
the key is to calculate an effective diameter D for the gas molecules. This can be done,
for example, on the basis of experimental data on dilute gases and from eq. (9.19) or
(9.20). Once the diameter is obtained, s £ and kg can be calculated as a function of the
mass density (or the molecular number density n) (Sengers, 1965).

Both the viscosity and the thermal conductivity expressions can be interpreted as
the result of a kinetic contribution, a collisional contribution, which is equivalent to
potential contribution, and a cross-coupling term between the kinetic and collisional
processes. Taking the thermal conductivity as an example, these two contributions can be
expressed as

k 1
T, + 1.2 4 0.76y = kinetic + cross + collisional (9.26)
konb Yy

which shows that the importance of the kinetic contribution decreases as the density
increases, whereas the collisional contribution increases with density. Figure 9.4 com-
pares the results of molecular dynamics simulation with the results from the Enskog
equation for each of the three terms (Alder et al., 1970), showing good agreement for
V > 5Vp or n < 0.2np, where Vy and ng are the volume and number density when
the molecules are close packed. At higher densities, significant deviations occur. Near
solidification, for example, the Enskog theory underestimates the shear viscosity by a
factor of two.

Despite the work of Enskog and many others, the success of the kinetic theory for
liquids, is limited. With the advance of computational power, direct simulation of liquid
molecules, that is, molecular dynamics, and the analysis of the simulation using linear
response theory, have largely replaced the kinetic theory approach for the study of
liquid transport properties. In chapter 10, we will discuss in more detail some molecular
dynamics simulation techniques and the linear response theory. In the following, we will
discuss Brownian motion. Einstein (1905) pioneered an entirely different approach from
that of the Boltzmann equation to study Brownian motion in liquids, and this eventually
led to the development of the linear response theory.

9.1.3 Brownian Motion and the Langevin Equation

Einstein is best known for his relativity theory. Few people are familiar with his work
on Brownian motion, which was a key step in the development of the atomic theory of
matter. Research on Brownian motion was carried out by Einstein (1905, 1906a, 1906b,
1956) for his doctoral dissertation when he was an engineer in a patent office in Bern,
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Switzerland. In fact, when he wrote his first paper on the Brownian motion in 1905, he
was unaware that Brownian motion had been observed by botanist Brown in 1827. His
motivation was to determine the size of molecules. Prior to his work, the well-established
Boltzmann kinetic theory was applicable only to gases. He intended to develop a kinetic
theory for liquids and, from the theory, to determine the size of the molecules.

Einstein considered the mass transfer of dilute solutes in a solvent. He first proved,
from statistical thermodynamics, that the solute generates an additional pressure, called
the osmotic pressure, that can be expressed as

1
p= —‘—/-NKBT =nkgT 9.27)

where N is the number of solute particles in the total solution volume V andn = N/ V is
the solute concentration per unit volume. This expression is similar to the ideal gas law
and is valid only when the solute is dilute, similar to the condition of an ideal gas. This
osmotic pressure can be measured by an osmometer, which employs a semi-permeable
membrane that permits the crossing of only the solvent, not the solute (Hiemenz, 1986).
Einstein considered next the mass diffusion of solute particles under a concentration
gradient of the particles (Einstein, 1908). The osmotic pressure drives the diffusion of
the solute particles. When the solute particles traverse the solvent, they experience a drag
that can be modeled by the well-established Stokes law in continuum fluid mechanics,

Fp = 37uDu (9.28)
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where (4 is the dynamic viscosity, D the particle diameter, and u the particle velocity.
At steady state, the osmotic pressure force is balanced by the frictional force on the

particles, leading to a steady drift velocity that is determined by the following balance
equation,

Aclp(x) — p(x +dx)] — dNQ@rDu)u, =0 (9.29)

for particles drifting in the x-direction, where d N is the number of solute particles in
the volume dV = A dx. Substituting egs. (9.27) into (9.29) leads to

KBT dn

n = — —
R YR (9.30)

The left-hand side is the volume flux of the solute particles. Thus the above equation is
just Fick’s law of diffusion,

dn

T (9.31)

where the diffusivity a[m? s~!] is related to the viscosity by

_ kgT
- 3nDu

(9.32)

Equation (9.32) is the celebrated Einstein relation. If both @ and 4 are known, the
diameter of the Brownian particle can be estimated, as was Einstein’s original intent. This
expression is similar to eq. (6.86), which is also called the Einstein relation. Equation
(6.86) is an electron analogy to what Einstein actually derived for Brownian particles,
except that in eq. (6.86) the electron mobility is a measure of how mobile the charge is;
that is, the higher the mobility, the larger the diffusivity and conductivity of electrons.
By contrast, the viscosity in eq. (9.32) is a measure of the resistance to the particle flow
and thus is in the denominator rather than the numerator.* The Einstein relation shows an
intrinsic relationship between transport properties (diffusivity) and the internal friction
(viscosity), and is one example of the general fluctuation—dissipation theorem that we
will discuss in the next chapter.

Equation (9.32) reflects Einstein’s motivation of determining the diameter of the
solute molecules, which are assumed to be much larger than those of the solvent, from
the diffusivity of the solute in the solvent. Another question is how to determine the
solute diffusivity. Einstein further showed, by solving the mass balance equation, that
the mean displacement of the solute particles, for transport along the x-direction only, is

(Ax) = ((x(1) = x(0)})'/? = V2ar (9.33)
while for motion in a three-dimensional space the mean displacement is given by

(Ar) = ((Ir(t) = r(0))?)!/? = V6ar (9.34)

*We have used p to present both the mobility of electrons in eq. (6.86) and the viscosity of a fluid, as is
customary in electronics and fluid mechanics, despite the opposite meaning of these two quantities.
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where x(7) and r(¢) are the instantaneous position of the particle. Thus, from measuring
the mean displacement of the solute, the diffusivity can be determined.

In addition to the above approach, Einstein established another method to determine
the diameter of solute particles. He proposed to measure the viscosity of the solvent
and of the solution, 1o, and u, respectively, and derived, again assuming dilute solute
particles, the following relationship between the two viscosities,

L o i435p=1 350D’ (9.35)
Ko 6
where ¢ is the volumetric concentration of the solute particles. We will not repeat
Einstein’s derivation but instead refer the reader to his original work (1906a; 1956).
This result again applies only to dilute solutes. Many studies have been done to extend
his results to higher volumetric concentrations (Hiemenz, 1986). These works should be
a good starting point to examine recent claims on the novel properties of nanoparticle-
seeded fluids, also referred to as nanofluids (Choi et al., 2001).

The Einstein relation can also be derived from the stochastic approach developed by
Langevin to treat Brownian motion of particles much larger than those of the surrounding
medium. The key idea of the Langevin equation is to assume that the motion of a
Brownian particle is subject to a frictional force that is linearly proportional to its velocity,
as in the Stokes law [eq. (9.28)], and a random driving force, R(¢), imparted by the
random motion of the molecules in the bath. The requirement that the Brownian particle
is much larger in size than the molecules in the bath implies that the collision time of
the bath molecules with the Brownian particle is much shorter than the relaxation time
of the Brownian particle from its initial velocity, and hence there is no time correlation
between the Brownian particle velocity and the molecular velocity. In the absence of
an external force, the Langevin equation that governs the instantaneous velocity of the
Brownian particle can be written as

du

K = S5 +R(®) (9.36)

where 7 is the friction coefficient for Brownian particles in a fluid. The Stokes law gives
1 = 37 Du/m. The random driving force R(¢) has the following characteristics:

(R())=0 9.37)
(R(@®)-u(r)) =0 (9.38)
(R(t +5) - R(s)) = 27 Ro8 (1) (9.39)

where the bracket () represents the ensemble average, a concept we discussed in
chapter 4. Equation (9.37) indicates that the random driving force averages to zero
because it acts in all directions. Equation (9.38) states that the random driving force
is not correlated to the velocity of the Brownian particle. This can be justified if the
Brownian particle size is large and its velocity relaxation time is much longer than the
characteristic fluctuation time of the random driving force. Equation (9.39) implies that
the autocorrelation of the random driving force is infinitely short.
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Now, we show how to derive the Einstein relation from the Langevin equation. Taking

the inner product of both sides of eq. (9.36) with r(r), the instantaneous position of the
Brownian particle, and utilizing the relation

du d*r  1d4%r?|
r —=r. —=—=_—
dt a2 2 dr?

— Juf? (9.40)

we obtain

1 d?|r?| g d|r?| B T8 o]
—-m = = .
2" am T g T i) RO Bl

By ensemble averaging, the last term on the right-hand side of the above equation drops
out because there is no correlation between the particle instantaneous position and the
random driving force. Applying the equipartition theorem,

3kgT

(lu(t)?) = (9.42)

we obtain from eq. (9.41)

1 od%(r?)) 1 d(r?))
. = = 3kgT 9.43
2" A * 2™ dt 55 s

The initial conditions for the above differential equation are

(Ir©@)* =0 (9.44)
d 2
E;(ll‘(o)l ) =2(r(0) -u(0)) =0 (9.45)
Equation (9.43) can be readily solved with the above initial conditions, leading to
T 1 1 _
(Ir ) = (6KB )(f == Se— "') (9.46)
nm non
At large times such that ¢ >> 1, eq. (9.46) becomes
T
(r)?) = (%85 )e 9.47)
Combining eq. (9.47) with eq. (9.34) leads to the Einstein relation
_ kel (9.48)
nm

This is identical to eq. (9.32), if we substitute = 37 Du/m. o
From the Langevin equation, one can also derive another way to galculate the fncu'on
coefficient. We start by integrating eq. (9.36) directly for a s.,oluuon‘ of the velocity.
Strictly speaking, because the driving force is random, di.rect integration of eq. (9.36)
is problematic from a mathematical point of view. This dlfﬁculty‘ can be overcome by
spectral analysis of the equation. Here, however, we will put aside the mathematical
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rigor and integrate eq. (9.36) directly as if R(r) were a continuous function. The end
results are the same as those from a rigorous mathematical treatment. Integration of
eq. (9.36) leads to

!
mu(t) = mu(0)e™ " 4 ¢~ / e™R(s)ds (9.49)
0
Taking the dot product of eq. (9.49) with u(0), we have
!
mu(?) - u(0) = mu(0) -u(0)e™" + e~ / e™R(s) - u(0)ds (9.50)
0

Ensemble-averaging the above equation yields

(u(t) - u(0)) = (u(0) - u(0))e™" = gl

e (9.51)

The ensemble average of the product of the same time-varying function at two different
times (A (t) A(t)) is called the autocorrelation function, which again will be defined more
carefully in chapter 10. In eq. (9.51), the left-hand side is the velocity autocorrelation
function. By integrating both sides of the above equation from # = 0 to r — o0, the
following expression for the friction coefficient can be obtained,

3kgT

/ (u(t) -u(0))dt = =3a (9.52)
0

Equation (9.52) shows that the friction coefficient and thus the diffusivity can be cal-
culated from the velocity autocorrelation function. This approach of calculating the
transport properties from the auto correlation functions has gained popularity with
increasing computational power, because the history of individual particles can be
monitored through molecular dynamics simulation, as we will see in the next chapter.
Modern treatments of liquids rely heavily on computational simulations (Alder and
Wainwright, 1967; Boon and Yip, 1980; Hansen and McDonald, 1986). For exam-
ple, the molecular dynamic calculations of Alder and Wainwright (1967) showed that
the velocity autocorrelation decays much slowly than the exponential function sug-
gested by eq. (9.46) and by the Enskog theory. Figure 9.4 shows another example
where molecular dynamics is used to examine the validity of the Enskog equation.

We will leave more discussion on the molecular dynamics simulations to the next
chapter.

9.2 Forces and Potentials between Particles and Surfaces

The discussiop in the previous section shows that for transport in liquids the intermo-
lecular p(?tennal plays a direct role in energy and momentum exchange. For liquid
transport in nanostructures, we naturally expect that the forces and potentials between
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the liquid molecules and their surroundings may become important. In our previous
consideration of boundary effects on the transport of dilute particles, based on the
Boltzmann equation or on wave propagation, the boundary impacts the transport only at
the point of particle trajectory or wavefunction overlapping with the boundary because
potential energy does not directly enter into the transport picture. On the other hand,
because dilute particles have relatively long mean free paths, a collision that occurs at
the boundary can affect the distribution quite far from the interface. Liquid molecules,
however, have short mean free paths, suggesting that boundary effects will most likely
be limited to the region where the interfacial potential changes significantly from that
in the bulk fluid. Despite this relatively straightforward argument, however, few studies
exist on how the interface potential impacts the transport properties. Most investigations
have so far been based on nonequilibrium molecular dynamics methods (Koplik and
Banavar, 1995; Thompson and Troian, 1997). On the other hand, there exists quite a large
literature on the forces and potentials between liquids and their interfaces, arising from
studies on surface tension, colloids, and complex fluids. Understanding such potentials
and forces is an important step in appreciating the interfacial transport processes and
incorporating them into either modeling or direct molecular dynamic simulations. In this
section, we will briefly summarize the interfacial interactions. We will start from the
intermolecular potentials to build expressions for interactions among surfaces, expressed
in terms of forces or interaction potentials. These surface interactions include van der
Waals interactions, which are typically attractive, and electrostatic interactions that
are typically repulsive, and other forces arising from the structure of the molecules
and the interfaces. We will talk about forces and potentials interchangeably, with the
understanding that force is related to the potential through

F=-Vo (9.53)

9.2.1 Intermolecular Potentials

Fundamentally, all the interatomic and intermolecular potentials are due to electrostatic
interactions. In chapter 3, we discussed bonding forces in crystals, such as van der
Waals bonding, ionic bonding, covalent bonding, and metallic bonding. In solids, the
force interactions are mainly due to electrostatic interactions among atoms. In liquids,
a greater variety of force interactions exists because liquids are made of molecules
and have more degrees of freedom. Figure 9.5 summarizes common types of interac-
tions between atoms, ions and molecules in vacuum and the corresponding interaction
potential @ (relative to the energy of the system in vacuum when the two parts are
far apart) (Israelachvili, 1992). The basic building block for all these potentials is the
Coulomb potential between two single charged particles, from which one can derive
other types of interaction potential based on the charge configurations in atoms and

molecules.

Example 9.1 Charge—dipole interaction

A dipole consists of two oppositely charged particles separated t?y a Qistance d.
Derive an expression for the potential between a charge and a fixed dipole in vacuum,

that is, the third line in figure 9.5.
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Figure 9.5 Common types of interaction between atoms, ions, and molecules in vacuum (after

Israelachvili, 1992).

Solution: Consider a charge ¢ placed in the field of the dipole, as shown in
figure E9.1. The potential energy between the charge and the dipole can be thought
of as the superposition of the potential energy of charge ¢ interacting with Q

and —Q, respectively,

_ Q¢ 1 1
" 4mey |AB  AC
where
i d 2 21/2
AB = (r - Ecose) + (% sin9>
i d 2 271/2
AC = <r+§cos(9> - <—§ sin6>

(E9.1.1)

(E9.1.2)

(E9.1.3)
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Figure E9.1 Figure
for example 9.1.

In writing eq. (E9.1.1), we did not include the potential energy of the positive and
negative charge of the dipole itself, which is included in the dipole self-energy.
Substituting eqs. (E9.1.1) and (E9.1.2) into eq. (E9.1.3) and making use of the
approximation that r 3> d, we obtain

gBcosf
47‘[6‘0)‘2

o, 0) = (E9.1.4)

where B = Qd is the dipole moment.

Comment. If the dipole is freely rotating, we can obtain the angle-averaged potential
based on the Boltzmann factor

; 1
e/ _ L

4

where the integration is over the entire solid angle. Using Taylor expansion for the
exponential factor, one can show (Israelachvili, 1992)

q*p?
6(4meg)2kpTr?

/ e 0O/kBT g0 (E9.1.5)

o(r) ~ — (E9.1.6)

9.2.2 Van der Waals Potential and Force between Surfaces

On the basis of the elementary potential interactions discussed in the previous section,
the force interaction between particles and surfaces can be obtained by summing up the
interactions between the atoms or molecules involved. Such a summation often leads to
qualitatively different behavior compared to the elementary forces between charge and
atoms given in figure 9.5.

Starting from the attractive van der Waals potential between two atoms, q.b(r) =
—C/r%, one may sum the interaction energies of all the atoms in one body that mtergct
with all the atoms in the other to obtain the interaction potential between the twp bodies
for a variety of geometries that are listed in figure 9.6 (Israelachvili, 1992). In this figure,
A is called, the Hamaker constant (Hamaker, 1937)

A =m2Cnina (9.54)

where 1, and 1, are the number densities of molecules of the two interacting nlelcgia.
A typical values of C is 10777 Jm® and n & 3 x 1028 m~3, leading to_z?g% 107127,
For example, for water, A = 1.5 X 10=19 J and for CCly, A = 0.5 x 1077 J.
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Figure E9.2 Figure for
example 9.2.

Example 9.2 Derive an expression for the van der Waals potential between one atom
and a surface.

Solution: We take a coordinate system as shown in figure E9.2. The atom is at equal
distance from all parts of a differential ring inside the surface and thus all the atoms
on the ring experience the same potential. The van der Waals attracting potential
between the atom and this differential volume of 27 r2drdx is

65
dd = — 6n27rrdr dx (E9.2.1)

(Vo+07+7?)

Integrating the above expression for x from D to co and for r from 0 to 0o, we obtain

nCn
D =— D> (E9.2.2)

which is identical to the formula in figure 9.6(b).

In example 9.2, and similarly for all cases in figure 9.6, we neglected the influence of
the atoms inside the same solid and assumed that the medium between the two surfaces is
vacuum. This treatment always leads to a positive Hamaker constant and thus an attractive
potential between the two bodies. An alternative approach is the Lifshitz (1956) theory,
which neglects the atomic structure and treats the objects as continuous media. The final
expressions are similar to those listed in figure 9.6 but the Hamaker constant between
surfaces 1 and 2, separated by a medium 3, can be expressed in terms of the dielectric
constants of the media. If all three media are dielectrics and the electronic excitation

frequencies are the same (v,), the Hamaker constant from the Lifshitz theory can be
approximated as

A 5, EKBT (Erl - 6‘rB) <5r2 —€r3
4 Erl + €13 &+ 613
3hve (nf, — n73)(nly — nZy)

82 2
\/(”rl +nl3)(n}, + k) [\/”31 +nly+ \/”32 i ”33]

(9.55)
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Figure 9.6 Van der Waals interaction free energies between two bodies. The Hamaker constant
A = w2Cnyny, where ny and n; are the atom number densities in the two media and C is the
coefficient in the atom—atom pair potential (after Israelachvili, 1992).

where &, is the static dielectric constant (at zero frequency), n, is the refractive index
in the visible frequency range, and the number in the subscript represents the medium.
The purpose for showing the above formula is to demonstrate the possibility of negative
Hamaker constant values and thus a repulsive van der Waals force between two macro-
scopic objects, separated by a third medium, depending on the relative magnitudes of
the dielectric constants of the media involved. Such negative Hamaker constant values
have indeed been observed, for example, between fused quartz and air, separated by a
water layer, and between CaF, and helium vapor, separated by liquid helium.

The van der Waals force between surfaces is also called the London force or dispersion
force. This potential is universal among all surfaces because it arises from the induced
dipoles among atoms.

9.2.3 Electric Double Layer Potential and Force at Interfaces

Surfaces immersed in liquids are usually charged because of the ionization or dissociation
of surface groups or the adsorption of ions from the solution onto a previously uncharged
surface [figure 9.7(a)]. The charges accumulated at the surface are balanced by an equal
but oppositely charged region of counterions. Some of these counterions are also bounded
to the surface, forming a so-called Stern or Helmboltz layer, which is usually very thin
(afew angstroms). The remaining counterions distribute near the surfaces but are free to
move, forming a diffuse electric double layer. This electric double layer is of fundamental
importance for a wide range of technologies such as batteries, fuel cells, colloids, and
in biochemistry and biotechnology.

We first determine the magnitude of the potential developed on the solid-liquid
interface. This potential can be easily measured, using the solid as an electrode. Under the
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Figure 9.7 (a) Electrical double layer near the interfacial region. The charge on the surface can
be due to dissociation or ionization of the surface materials or adsorption from the liquid. The
charges in the liquid can be of multiple species. (b) A repulsive potential develops between two
closely spaced surfaces when the charges in the liquids are of only one type, due, for example, to
ionization or dissociation from the surface.

condition of local equilibrium, the ion density on the solid surface obeys the Boltzmann
distribution

¢ = cope=ZeVslenT

(9.56)

where Z is the number of charges per ions and e is the unit charge (—e for an electron),
Vs is the electrostatic potential of the solid surface, and c;,, is the ion density at zero
surface electrostatic potential. Equation (9.55) can be written as

AP LS (i) =gy (i) 9.57)

e Cp e Nzp

where n and n;), are the counterion densities in the solution corresponding to ¢ and Cp
which are much easier to measure than the charge densities on the solid side. Equation
(9.57) is called the Nernst equation. This is very similar to the Seebeck coefficient
expression we derived in example 6.1.

As an example, consider a saturated solution of Agl in pure water with a solid
Agl electrode. The saturated solution has equal amounts of 8.7 x 10~ moles per liter
(mol L™!) of Ag* and I~ ions at 25°C. It is found experimentally that the Agl electrode
is negatively charged in this situation, meaning that more I~ ions are adsorbed on the
surface. At zero potential, the Ag™ concentration is 3 x 1076 mol L~!. Using eq. (9.57),
the Nernst potential is ¥y = —150 mV.

To find the ion distribution near the surface, we need to solve the following equation
governing the distribution of electrostatic potential v that can be derived from eq. (5.13),

—e0e, V2 = p, (9.58)
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where ¢, is the dielectric constant and p,, is the net charge number density. The charge
distribution in the solution is also given by the Boltzmann distribution, leading to the
Poisson-Boltzmann equation

(9.59)

Z.
—eoer21/1= E Zienp; exp (— ,et/r)
i

KBT

where ng; is the ion concentration far from the surface and the summation is over all
the ions in the solution. No simple analytical solution exists for the Poisson—-Boltzmann
equation. The Debye-Hiickel theory of the electric double layer considers the limit when
Zieyr < kpT such that the Poisson-Boltzmann equation can be linearized as

Z.
—0e, V2 = Z Zieng; (1 = ﬂ) (9.60)
i

I(BT

Far away from the surface, the liquid has no net charge. This requires > Zieng; = 0.
We further consider a planar geometry as shown in figure 9.7(a) such that eq. (9.60) can
be written as

d*y Z Z2e?ny;

dx? = i eoerkpT (2461
with the boundary conditions
x=0,¢% =ysandx — 00,y — 0 (9.62)
The solution for the potential distribution is then
¥ (x) = yse (9.63)
where § is called the Debye length,
Ly (9.64)
)

which is very similar to the p—n junction width given by eq. (8.96). In fact, the dt?velop-
ment of p—n junction theory also relies on solving the P01sson‘—Boltzmann equation and
exploited extensively the Debye—Hiickel theory for the electric douple layer (Shockley,
1949). The Debye length is of the order of a few nanometers for typlcal electrolytes, put
can extend to hundreds of nanometers, depending on the dielectric constant and the ion
concentration. o

Now we consider the force balance inside the liquid. Because the liquid is sta-
tionary, the electrostatic force on the liquid must balance the pressure force. For the

one-dimensional geometry in figure 9.7(a), this leads to

d d
_% e, (_ l) - (9.65)



424 NANOSCALE ENERGY TRANSPORT AND CONVERSION

where (—d/dx) gives the electric field and p, (—dV/dx) gives the electrostatic force,
Again, substituting in the Boltzmann distribution for charge, we can write the above
equation as

Z‘
dp = —dy Y Zienoi exp (— K’:;// ) (9.66)
i

The above equation can be integrated, from infinity where p = po and ¢ = 0
leading to ’

e  Ziey(x)
g a0 < ]

i

=Y kpT [ni(x) = noil 9.67)

The right-hand side of eq. (9.67) is always positive and thus the pressure inside the
electric double layer is higher than that inside the bulk liquid at the equilibrium state,
When the surface potential is negative, the anion concentration in the liquid near the
surface is in excess of its equilibrium distribution far away from the surface and
the cation concentration is smaller than its equilibrium distribution. The net effect is
that the electric double layer creates an attraction force between the ions on the solid
surface and the counterions in the liquid. This attractive electrostatic force is balanced
by the positive pressure in the liquid.

Hence, when two solid surfaces are brought close to each other as shown in figure
9.7(b), a repulsive force develops between the two surfaces because the electrostatic
-forf:e between the liquid and the solid surfaces no longer balances the positive pressure
inside the liquid. A detailed exact solution for the symmetric surface case with only
one type of counterions in the liquid has been obtained without invoking the Debye—
Hiickel approximation (Israelachvili, 1992). In this case, the potential distribution and
the repulsive pressure between the two surfaces are given by

5P (_ Zew) _ 1
«kgT )~ cos? Kx Bi68)
kgT g
p(D) = k5Tno (D) = 2e0t, <__> K> 9.69)
Ze

where ng is the counterion number density at the middle plane when the two surfaces

are separated py adistance D, and 1/K is of the same order as the Debye length. K and
ng are determined by the surface charge density c;,

B 2kgTK KD Cs
Ze tan 7 = anr (9.70)
K2 = (Ze)* no

" 2eoerkgT L
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Figure 9.8 A repulsive disjoining pressure in a liquid film can raise the liquid film much higher
than can surface tension.

As an example, consider two charged surfaces with ¢, = 0.2 Cm™2 (which is one charge
per 0.6 nm?) separated by D = 2 nm of water. Assuming monovalent counterions, that
is, Z = 1, eq. (9.70) gives K = 1.34 x 10° m™" and eq. (9.69) gives p(D) = 1.7 x 106
Nm=2 or 17 atm. On the other hand, the van der Waals attraction force between the
two surfaces, based on figure 8.5, is only A/(127 D3) ~ 3 x 10* Nm~2 for a typical
Hamaker constant of 10720 J, which is much smaller than the repulsive force of the
electrical double layer.

The repulsive force inside the liquid, due to the electric double layer for the case
discussed here and also due to a van der Waals force (when the Hamaker constant is
negative), leads to the concept of disjoining pressure (Derjaguin et al., 1987). The repul-
sive force means that medium 3, in between media 1 and 2, experiences an expansion,
or a negative pressure, which is superimposed onto normal compressive pressure. This
disjoining pressure can result in a variety of consequences that may affect thin-film
spreading and phase-change processes (Israelachvili, 1992; Wayner, 1998).

Figure 9.8 shows an example where the disjoining pressure plays an important role.
The vapor-liquid interface can be thought of as the plane of symmetry in figure 9.7(b)
if the additional liquid—vapor interface charge adsorption is neglected. The correspond-
ing repulsive pressure (disjoining pressure) inside the liquid layer due to the electric
double layer between the liquid—solid interface can be calculated from eq. (9.69) by
taking D = 2d, where d is the liquid film thickness. In the limit of high surface charge

density cs, eq. (9.70) leads to the solution K — /D and thus

2
wkgT
_ mrpl (9.72)
pa(d) = 2e0ér ( 2Zed )
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Figure 9.9 (a) Superposition of the double layer potential and van der Waals potential (DLVO
theory). (b) Combined potential under varying salt concentration and surface potential.

This is .known as the Langmuir equation. This repulsive pressure sucks the liquid film
to a height H. At steady state, this liquid film is balanced by the gravitational force
pag H, which leads to ’

H__2808,~ nwkgT 2
= pag \2Zed Qi23)

where py is the density of the liquid.

‘ Combmmg the discussion in this section with that in the previous one, we see that the
interaction potential between two close surfaces separated by a liquid layer experiences
both electrostatic and van der Waals force,

Y = Y (van der Waals) + ¢ (electric double layer) 9.74)

The van d.er Waals force is usually attractive, although repulsive force can occur for some
com?mauons of surfaces. The electric double layer generates a repulsive force. One
possible combined potential profile between two surfaces is illustrated in figure 9 9(a)
Whether the maximum or minimum in the figure appears or not apparently depenéls on‘
the strength of each potential component. Unlike the interatomic potential, which has
a shon-rar_lge electrostatic repulsive force and a long-range van der WaaI; force, the
electrostatic .repulsive force due to a double layer is fairly long range. If the var; der
W;ials potential between.surfaces is attractive, it tends to pull the surfaées toward each
;)Ltl r?arc g?ereas the repulsive electric double layer force prefers the separation of the solid
balzrcl)cfr:nske the discussion more concr.ete, we consider a particulate solution. The
P .detween these two for(:f:s determines whether the particles form a stable solution
Strox(]) c;x ) c-)r aggregate. ‘For highly charged particles in a dilute electrolyte, there is a

g long-range repulsion that peaks at some distance (1-4 nm), creating an energy
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barrier [figure 9.9(b)]. In more concentrated electrolytic solutions, a secondary mini-
mum forms before the energy barrier due to the decreased Debye layer thickness. This
secondary minimum, although only marginally thermodynamically favorable, forms a
metastable state of the particles, or a colloid. If the surface charge density is low, the
repulsive potential is small and no energy barrier forms. In this case, the van der Waals
force dominates and pulls the particles together. This aggregation process is also called
coagulation or flocculation. This picture of colloids is called the DLVO theory, after
Derjaguin and Landau (1941) and Verwey and Overbeek (1948).

9.2.4 Surface Forces and Potentials Due to Molecular Structures

The above analysis of the van der Waals force and the electric double layers are essentially
e detailed molecular structure at the interfaces

lves. Within a few molecular layers of the
lter the behavior of the interfacial

a continuum approach that ignores th
or the structures of the interfaces themse
interface, the molecular and interfacial structures a

potential.
Close to solid-liquid surfaces, the liquid molecules are more regularly arranged

because of the constraints of the immobile solid atoms. The density profile oscillates
as shown in figure 9.10. This density variation causes an oscillatory pressure vari-

ation, called the solvation force, that is superimposed onto the van der Waals and

electric double layer forces based on the continuum analysis. As indicated in figure
few (~3) molecular layers near the

9.10, the structural variations occur only within a

surface, as does the oscillatory solvation force. Consequently, as two surfaces are
brought close together, the pressure between the two surfaces varies (Isrgelachvxh,
1992; Koplik and Banavar, 1995). In addition to the oscillatory solvation force,
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a repulsive force exists between two hydrophilic surfaces and is called the hydration
force. The force decays exponentially from the surface at a much faster rate than that
of the electric double layer and is active within a range of 1-5 nm. The origins of
this hydration force are either the repulsive nature of the similarly charged hydrogen-
bonding surface groups that modify the structure of the water near the surface (their
effective range is about 3-5 nm), or the repulsion of the thermally excited molecular
chains protruding from one medium into the other (their range is 1-2 nm). Similarly
between hydrophobic surfaces, an attractive hydrophobic force exists and this force ha;
a range of ~10 nm and can be much stronger than that predicted for the van der Waals
attraction force.

It is assumed in the above discussions that the interacting surfaces are well defined
rigid, and smooth. At liquid-liquid, and liquid—vapor interfaces, thermal ﬂuctuatiori
changes the interface constantly, and this can be considered as a roughness of the
interface. Similarly, liquid—polymer and polymer—polymer interfaces are also “rough” to
the size of the polymers. As two such surfaces come together, a repulsive force develops
due to either the confinement of the motion of each interface (fluctuation force) or thé
interaction of the molecules (steric force). These repulsive forces are often understood
from the configurational entropy perspective. For a more detailed discussion on these
forces, refer to the excellent textbook by Israelachvili (1992).

9.2.5 Surface Tension

At a liquid-vapor interface, the atoms experience a different potential from those atoms
deep inside the liquid, and a similar argument can also be made for solid-vapor and
solid-liquid interfaces. The liquid molecules at the interface have the tendency to escape
to the vapor side and the intermolecular spacing at the interfaces is larger than deep inside
the liquid. This causes an effective density variation, as illustrated in figure 9.11. The
larger intermolecular distance also means that the molecules at the interfacial region
have a higher potential energy than those inside. The excess energy needed to bring
the liquid molecules from inside the liquid to the interfacial region, per unit area of
the interface, is the surface tension y, or the energy “cost” of creating the surface. The
surface tension units are [J m~2], or [N m~!] in the more familiar force unit. This force
unit is also related to the conventional understanding of surface tension as the tangential
force along the interface per unit length. Under this force picture, the work required to
stretch a liquid membrane as shown in figure 9.12 is

W:dex:/2yde:2yL Ax = yAA; (9.75)

w}'lere AAy is the total surface area increase and the factor of two arises from the
existence of two interfaces of the membrane. During this stretching, the liquid molecules
inside the membrane are pushed toward the interfaces. In thermodynamics, work is a
path dependent variable. However, the surface tension is a thermodynami‘c variable
analog(?us 'to .the pressure in bulk fluids (Defay et al., 1966; Hiemenz, 1986). Equatior;
(9.75) is similar to the pAV work in bulk fluids due to volume expansion. In fact,
the analogy between surface layer and bulk fluid extends far beyond surface tension
and pressure. Surface states are important topics in colloidal and surface chemistry.
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The bulk equations of states and fluid flow all have analogies for two-dimensional
surfaces, which will not be discussed further (Hiemenz, 1986).

The surface tension concept approximates the interface as a mathematical plane
(figure 9.11)—the surface where the tension acts, which sharply divides the liquid and
the vapor. On each side of the surface of tension, the properties are assumed to be
uniform and equal to that of the bulk values on the same side. The physical interface
between liquid and vapor phases, however, is not sharp, as figure 9.11 indicates, with
the density varying from that of the liquid to that of the vapor over a narrow range. The
exact location of the surface of tension, however, depends on definition. Young (1972)
defines the surface of tension on the basis of the mechanical force balance, whereas the
Gibbs (1928) treatment, based on thermodynamics, defines the surface (Gibbs surface)
as the location where the liquid and the vapor are of equal molar concentration. Here,

FRAME
o /

Figure 9.12
Stretching of a
TPy liquid membrane.
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Figure 9.13 (a) Work of cohesion Wi, is the energy needed to create two surfaces of unit area
from the same matter. (b) Work of adhesion W3 is the energy needed per unit area to separate
two different surfaces in contact.

we will not get into details of these discussions but refer interested readers to references

on this topic (Defay et al., 1966; Hiemenz, 1986).

Theoretically, the surface tension can be determined from the interfacial potential
discussed earlier. We consider first the separation of a solid into two parts, separated
by a vacuum, as shown in figure 9.13(a). The energy needed per unit area, or the work
done to separate the solid, is called the work of cohesion Wj;. After separation, two
surfaces are formed. The energy input during the separation of the solid is stored at the
two surfaces, and thus the surface tension is

1
y1= Wi 9.76)

2

For liquids, we cannot directly use this process to create two surfaces physically.
However, we can increase the area of an existing surface easily. The energy needed per
unit increase in the surface area is the surface tension, which can be similarly calculated
from eq. (9.76) if we imagine that liquid can be similarly separated. To evaluate Wiy,
we can refer to figure 9.6 for the van der Waals force interaction between atoms in the
medium. The work done in separating two parallel plates from a separation of D to
infinity is

A

Wid = ——
4= 17 D2

9.77)
where we have used the superscript d to denote that this is due to van der Waals, or the
London dispersion potential. When the two media are in contact, the effective separation
P ~ ¢/2.5. For a typical value of 0 = 0.4 nm, D = 0.16 nm. Substituting this value
into egs. (9.77) and (9.76), we obtain

14N m(o-m nm) 9.78)

This simple estimation based on D = 0.16 nm actually gives very good values of surface
energy for a wide variety of solid and liquid surfaces, as shown in Table 9.1.

Now consider the separation of two immiscible liquids in contact into two stand-alone
parts at the interface [figure 9.13(b)]. After separation, the interfacial energy on each
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Table 9.1 Hamaker constant and surface tension of typical fluids

P e -1
Theoretical Hamalker Surface Tension (MNm™ ")

Material Constant (10‘20 1) Eq. (9.78) Experimental
Liquid helium 0.057 0.28 0.12-0.35
n-pentane 3.75 18.3 16.1
n-octane 45 219 21.6
CCly 99 26.8 29.7
Acetone 4.1 20 23.7
Ethanol 42 20.5 22.8
Methanol 3.6 18 23
Glycol 5.6 28 48
Glycerol 6.7 33 63
Water 34T 18 73

Source: Israelachvili, 1992

surface is y and y,. The energy difference between the surface energy after separation
and the interfacial tension i, before separation is called the work of adhesion,

Wpn=n-+r-—-v2 (9.79)

The above is the Dupré equation, which leads to a way of calculating the surface tension
y12. The work of adhesion can be approximately estimated from the work of cohesion,

Wi = v Wi1aWa2d = 2/Y1a2d (9.80)
Equations (9.79) and (9.80) lead to

vi2 =v1 +v2 = 2J/Y1dvad (9.81)

Equation (9.81) is often called the Girifalco-Good-Fowkes equation. The square root
term is due to the London dispersion force (van der Waals force), while (y) +y2) includes
all mechanisms contributing to the interfacial potential, on the basis of the argument that
only the van der Waals potential operates across the interface.

Consider now a curved interface, figure 9.14. Because the surface tension is tangential
to the surface, it has a component pointing toward the concave side of the interface,
which must be balanced by a pressure difference across the surface. The normal force
component due to the pressure difference is

(p" — pHAxAy

where Ax and Ay are along two orthogonal directions. The surface tension force along
the two lines perpendicular to length Ax is y Ax, and its normal force component is

Ay
2y Ax sin(Aby) = 2y Ax x ABy =2y szT (9.82)
y

where ry is the radius of curvature for the curve Ay. A similar expression exists for
the force component along the two lines perpendicular to Ay. Equating the normal
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Figure 9.14 Derivation S
of Laplace equation for N v/
pressure difference created \\ \ //

due to surface tension \
on a curved surface. \

pressure force to the projection of the surface tension force, we obtain the Laplace
equation

p,,_p/zy(iJrg
e (9.83)
where r, and ry are the two local radii of curvature in two orthogonal directions,
usually taken along the principal directions of the surface such that ry and ry are the

rinci - : o )
gec ocrfjsl radii of curvature. For a spherical surface, ry = ry = r, the Laplace equation

, 2y
p'-p = — (9.84)

W}}en a liquid condenses on a solid surface, there are three phases and potentially
Fhree interfaces, the liquid—vapor, the liquid—solid, and the solid—vapor. Knowing the
1nte'rfacia1 tension for each interface, we can use a simple force balance to derive the
static contact angle between a droplet and a surface as shown in figure 9.15,

Y13 = ¥23¢0860 + Y12 (9.85)

Figure 9.15 Derivation of the
Young equation.
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which is known as the Young equation. Depending on the values of surface tension at
the three interfaces, a solution for 6 may exist. In this case, the liquid forms droplets
on the surface. When there exists no solution for 6, the liquid film spreads out to wet
the surface.

9.3 Size Effects on Single-Phase Flow and Convection

The above discussion suggests that in the range of a few to tens of nanometers, and
maybe even hundreds of nanometers in the case of the electric double layer (depending
on the Debye length), the intermolecular potential between liquid molecules and liquid-
solid surfaces may be modified. These modifications can potentially impact the fluid
flow and heat transfer characteristics in micro- and nanostructures. Up to now, however,
there exists no simple way to estimate how the interfacial potential affects fluid flow
and heat transfer characteristics. The experimental data on pressure-driven fluid flow
in microchannels scatter widely and lead to different interpretations, and not much
data are available for nanochannels. In this section, we will first comment on pressure-
driven flow in micro- and nanoscale channels, then follow with a brief introduction to
electrokinetic and electrophoretic flows. The latter is much better understood and widely
used in biotechnology.

9.3.1 Pressure-Driven Flow and Heat Transfer
in Micro- and Nanochannels

Developments in micro-electro-mechanical systems (MEMS) have attracted strong inter-
est in fluid flow and heat transfer in microchannels (Ho and Tai, 1998). Quite a large
amount of experimental work has been performed on fluid flow in microchannels, par-
ticularly in relation to applications in biotechnology. Theoretically, one question that
has been debated is whether fluid flow in microchannels deviates from the laws used for
macrochannels. Unfortunately, experimental work so far has not been conclusive. The
earliest experiments on liquid flow in microchannels were carried out by Poiseuille [see
Sutera and Skalak, (1993) for an interesting historical review]. Poiseuille was interested
inblood flow in the arterioles and venules but realized that controlled experiments using
simple liquids would give him clearer formulations of the laws governing blood flow. His
experiments employed glass tubes with diameters in the range of 15-600 pm and lengths
of 6.77-100.5 mm. Many fluids were tested, including water, aqueous salt solutions,
teas, wines and spirits, extracts of plants and roots, ethers, alcohols, and solutions of
ammonia. On the basis of these experiments, he derived the following expression for
the volumetric flow rate,
4
Oy = n_D_AE (9.86)
128 uL

which we now call the Poiseuille law. In eq. (9.86), D is the tube diameter, L is the
length of the tube, and A P is the total pressure drop.

At the time of Poiseuille’s experiments, the concept of viscosity was just being
developed and was not used in his work. Yet the viscosity values deduced from his
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experimental data are within 0.1% of the accepted values! These facts strongly suggest
that liquid flow in microchannels of comparable diameter should not deviate signi-
ficantly from predictions of the classical laws. However, some recent experiments
in microchannels of comparable or even larger diameters indicate deviations from
Poiseuille’s results. What are the possible reasons for the deviation observed in recent
experiments? Examining these experiments, we can infer the following causes:

| Entrance and exit region effects. In Poiseuille’s experiments, the entrance region
was carefully shaped and the exit was situated in water to eliminate the effects of
surface tension at the exit. Long tubes were used such that the entrance region was
much shorter than the fully developed flow. More recent experiments using silicon
or stainless steel microchannels usually do not allow similar precautions to be taken
for the entrance and exit effects.

. Surface roughness effects. Stainless steel tubes and micromachined channels typi-
cally have a surface roughness larger than that of blown glass tubes. There exist
observations of early transition to turbulence and deviation from the Moody friction
factor chart in microchannels. Although the simple scaling law based on relative
surface roughness to the diameter seems to be sufficient for the modification of
the friction factor in macrochannels, one may argue that this may not be the most
appropriate parameter in a microchannel. For example, with decreasing diameter
the volume-to-surface ratio of the liquid in contact with the wall decreases. How
does such a ratio influence the friction factor for microchannel flow is an open
question.

3. Effects of surface forces. Because the surfaces of silicon and stainless steel are

different from that of glass, the surface forces discussed in section 9.2 may play
a role in determining the friction factor or heat transfer characteristics. However,
there is no modeling or simulation to quantify the effects of surface forces on
single-phase flow.

4. Experimental error. Because fluid flow in microchannels typically requires high
pressure and the flow rate is very small, it takes a long time to reach steady state.
An accurate characterization of the channel diameter is critical because the flow
rate is proportional to ~D*.

[Se]

Given the existing large variations that exist in reported fluid flow characteristics in
microchannels, it is not strange to see a similarly large variation in the experimental data
on heat transfer characteristics in such channels (Obot, 2000; Sobhan and Garimella,
2QOO). Despite these large variations, consensus is gradually emerging that these vari-
ations are more likely to be due to causes similar to those listed above rather than the
breakdown of the continuum approximation.

Moving further down in scale, fluid flow in nanoscale becomes of interest to the
gnderstanding of a wide range of phenomena, such as self-assembly, DNA dynamics in
liquids, and nanofabrication. The extreme of very narrow channels is amenable to mole-
cular dynamics simulation, as reviewed by Koplik and Banavar (1995). One question
on w'h.ich molecular dynamics can provide considerable insight is that of boundary
conditions. Koplik et al. (1989) concluded that, in a simple liquid undergoing Poiseuille
or Couette flow, for all practical purposes the average velocity vanishes at the wall
and thus the non-slip boundary conditions are valid. Thompson and Robbins (1990)
showeq that in-plane ordering is a key factor in being able to transmit shear stress across
the fluid-solid interface. By varying the temperature, the wall-fluid commensurability,
and the wall-fluid couplings, the range of behaviors from complete slip to non-slip
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was observed in their simulations. For simple spherical molecules, a direct correlation
between the extent of in-plane ordering and the degree of slip was found. A general
boundary condition was proposed, based on molecular dynamics simulation of Couette
flow using the Lennard—Jones potential (Thompson and Troian, 1997). So far, there have
not been many studies on convective heat transfer in nanochannels, despite the fact that
molecular dynamics has been widely used to study phase change and heat conduction
problems.

Example 9.3 Order of magnitude for slip to occur

To estimate the order of magnitude for the slip to occur, we consider a simple model
as shown in figure E9.3(a). A molecule sits on top of a plane of molecules forming
a solid surface. Estimate how much shear force is needed to slide the molecule
on the surfaces.

12621
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b 8 2.2E-21
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= L 2R,
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0.2 0 x(nm) o2

(@ (b)

Figure E9.3 Figure for example 9.3.

Solution: We consider the van der Waals attraction potential between the molecule
of interest and the solid wall. Assuming that the distance between the molecule and
the surface is D, the interaction potential as a function coordinate x is then

C

o= s L3:L
*wV =" X [Er G- o+ DT (2D

where y is the coordinate direction perpendicular to the page. In figure E9.3(b), we
plotted the above expression using typical values of D(= 0.2 nm) and C (10‘77
Jm®) as a function of x for y = 0. From the potential distribution, the attraction
force acting on the molecule can be estimated, which is ~10~'! N. Considering that
there is approximately one molecular per (0.2 nm)? of surface area, the shear stress
needed to cause the layer of molecules to slip is then ~10'° N m~2. To put this value
into perspective, the shear stress generated for a velocity change of 1 m s~! over
1 wm is 10° N m~2 using the viscosity of water. These numbers strongly suggest

that the slip flow is unlikely to occur.

Comments. The above model is very crude. It does not include the interaction of the
molecules with the other molecules and does not include the thermal motion of the
molecules. We encourage interested readers to develop more rigorous models along

similar lines of reasoning.
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Surface
Of Shear

(a) (b)

Figure 9.16 Electrokinetic phenomena: (a) electrophoresis; (b) electro-osmosis.

9.3.2 Electrokinetic Flows

The electrical double layer discussed in section 9.2.3 can be exploited to create various
kinds of flows that have become increasingly important for micro- and nanofluidic
devices. Under an external electrical field, positively and negatively charged particles
experience forces in opposite directions, which may set either the liquid or the solid into
motion, depending on their relative mobility. For example, if a field is applied along a
stationary dielectric solid wall with an electric double layer, the ions in the liquid side
experience an electrostatic force and are set into motion. These ions will drag the bulk
liquid into motion through viscous force (Rice and Whitehead, 1965). Such fluid flow
phenomena are known as electro-osmosis [figure 9.16(b)]. In other situations, such as
when particles are suspended inside an electrolyte, an external electric field can set the
charged particles into motion, a phenomenon called electrophoresis [figure 9.16(a)].

9.3.2.1 Electrophoretic Motion

As an example of electrophoresis, we consider the motion of a charged sphere inside an
electrolytic solution under an external electric field &, as shown in figure 9.16(a). The
particle experiences a force and will be set into motion. A layer of liquid molecules in
the immediate vicinity of the particle will also move at the same velocity as the particle
due to the strong molecular bonding between the solid and the liquid molecules. This
layer is typically only a few atomic layers thick but it affects the net charge and thus
the electrostatic force on the particle [similar to the Stern layer in figure 9.7(a)]. The
boundary between this immobile liquid layer and the mobile liquid molecules is called
the surface of shear and its location is generally difficult to determine exactly. The
balance of the electrostatic force with the viscous force leads to

q&
3ruD

3ruDu=g&oru= (9.87)
whe.re u is the drift velocity of the particle relative to the solution. The charge on a
particle ¢ should be considered as the net charge within the surface of shear. It can be
related to the electrostatic potential at the surface of shear, which is also called the zeta
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potential (¢), by solving the Poisson-Boltzmann equation for a spherical coordinate.
When the Debye layer thickness & is much larger than the particle diameter, the zeta
potential is (Hiemenz, 1986)

q 8 q

~

B 2mepe, D 8 + D/2 ~ 2meper D

(9.88)

Substituting eq (9.88) into (9.87) leads to an expression of the particle velocity in terms
of the zeta potential,

206, &
= -

T (9.89)

The above analysis can be applied to biomolecules. Different biomolecules (DNAs
and proteins) usually have different charge and effective diameters and thus will have
different terminal velocities. Under the same electric field, they have different drift
velocities and thus travel different distances, which means that different biomolecules
can be separated. This is the basis of gel-electrophoresis, whichis widely used in biology
to separate biomolecules (Manchenko, 2003).

9.3.2.2 Electro-Osmotic Flow

We consider now the electrostatically driven osmotic fluid flow in microchannels
formed between two parallel plates as shown in figure 9.16(b). Taking a differential
control volume of the fluids, the balance of the viscous force and the electrostatic

force gives
d*u _ d*y
u——dy;,_ =& =& (—soer ) (9.90)

where &, is the x component of the electric field. This equation should be coupled
to the Poisson-Boltzmann equation to obtain the potential profile. Here we assume
that the thickness of the electric double layer & is small compared to the plate spac-
ing; that is, § < D. Outside the electric double layer, ¥ = 0 and thus eq. (9.90)

becomes
d*u D (D )
G _(Z—s)<y<|= -8 9.91)
MdyZ 0 for (2 ) =Y=\3

The above equation can be integrated once to give

du (9.92)

The symmetry requirement at y = 0 leads to C; = 0. Thus the velocity distribution
must be a constant outside the electric double layer,

D D
u(y) = uo for — (—2' = 5) <y= (3 = 5) (9.93)
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Now consider transport inside the electric double layer. Integrating eq. (9.90) once
leads to

du dyr )
L= G| — |+ C2 9.94
ﬂd}, 0€r Cx <dy ( )
At the edge of the electric double layer, du/dy = 0 and dy//dy = 0, thus C, = 0.
Integrating eq. (9.94) again, from the wall to the edge of the electric double layer,
we have

wluo — u(y = =D/2)] = —eoe, &Y (y = =D/2+8) = (] (9.95)

where ¢ is the zeta potential on the surface of the shear (we have neglected the thickness
of the surface of the shear). At the edge of the electric double layer, y = —D/2 434,
the potential v is zero. On the surface of the shear, the velocity is zero. Thus, eq. (9.95)
gives the velocity of the fluid in the center region of the channel as

__ Eoér &L
w

The velocity profile of an electro-osmotic flow is sketched in figure 16(b). Because
the electric double layer thickness is much smaller than the plate separation, the flow
is essentially a plug flow with uniform velocity. Within the electric double layer, the
velocity decreases continuously to zero at the surface of the shear.

The above derivation of electro-osmotic flow does not consider the fluid structure
near the surfaces such as that sketched in figure 9.10. A recent molecular dynamics
study (Freund, 2002) found that ions are more attracted to the wall than the Poisson—
Boltzmann equation predicts for electro-osmotic flow in nanochannels, suggesting that
discrete nature of ions can be important for flow in nanostructures.

o (9.96)

9.4 Size Effects on Phase Transition

Size has profound effects on phase change processes. One can easily appreciate this from
the Laplace equation, eq. (9.84), that shows pressure dependence on curvature. Since
pressure is related to other thermodynamic properties, it is reasonable to anticipate
that certain thermodynamic properties will be influenced by size. Examples are surface
tension, phase transition pressure and temperature, and so on. In-depth discussion of
the thermodynamics of small systems can be found in the work of Hill (1963, 1964).
Here we focus on the effects of curvature. We further limit our discussion to the phase
transition of a pure substance; in other words, only one material exists in the system so
that only two phases are present.

The starting point in analyzing curvature effects on thermodynamic properties is
based on the Laplace equation and thermodynamic relations. We consider a spherical
geometry (droplet or bubble). The inner pressure is p” and the surrounding fluid pres-

sure is p’. When the system goes from one equilibrium state to another, the Laplace
equation (9.84) leads to

3 / 2
dp" —dp' =d (__y) 9.97)
r
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Next, we eliminate some variables so that we can solve the above equation. Because
each phase is in thermal equilibrium, we can use the Gibbs—-Duhem equation [eq. (8.83)]
for each of the bulk phases

§s'dT —v'dp' +dp =0 (9.98)

s"dT —v"dp” +du” =0 (9.99)

where s and v are the entropy and volume per mole, respectively, and p is the
chemical potential. A similar equation, called the Gibbs equation, exists for the
interface,

dy = —s;dT — T'dp; (9.100)

where T is the number density of molecules per unit area at the surface of tension,
s; is the entropy per unit area, and p; is the chemical potential at the interface.
Equations (9.97)~(9.100) form the basis for analysing the effects of curvature on
thermodynamic properties. Which of the variables we choose to eliminate depends
on whether the liquid or the vapor is inside the sphere, and what are the system
constraints, that is, constant pressure or constant temperature. We discuss a few
cases below.

9.4.1 Curvature Effect on Vapor Pressure of Droplets

First we consider a droplet system at constant temperature s0 that p” is the pressure
inside the liquid droplet. At equilibrium, since W' = p' = i = i, eqs. (9.98) and
(9.99) lead to

v'dp' =v"dp" (9.101)

Substituting eq. (9.101) into (9.97) and eliminating p” yields

"
d (3’_) ST (9.102)

r v

If we further assume v’ 3> v”, the ideal gas law for the vapor phase, an.d that v (liquiQ)
is independent of pressure, the above equation can be integrated, leading to the Kelvin

equation
/!
ol B =t (9.103)
)20 r RT

where R is the universal gas constant and po is the normal vapor pressure when the
interface is flat (- — 00). This equation shows that theT equilibrium vapor pressure
increases as the liquid droplet radius decreases. For a given vapor pressure, smaller
droplets tend to evaporate. Thus, in a mist of droplets .of pure substance, the large
droplets will grow at the expense of the small droplets since they have a lower vapor

pressure.
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7

Figure 9.17 Capillary condensation inside nanopores. (a) Before the pores are filled, the vapor
pressure inside the pores is lower than in bulk form; even superheated vapor may condense if
eq. (9.104) is satisfied. (b) Once the meniscus reaches the mouth of the pore, the vapor pressure
starts to increase as the radius of curvature decreases.

If, instead of droplets, bubbles are formed in a liquid ambient, a similar analysis leads
to the Kelvin equation for the vapor pressure p in the bubble,

p!/ 2)’ vl
m({&=)=-2L—
n(p0> e (9.104)

which shows that the equilibrium vapor pressure inside a bubble is lower than its
corresponding equilibrium pressure when a flat interface exists.

We can use the Kelvin relation to understand the condensation of a vapor in a porous
medium [figure 9.17(a) and (b)]. Let us first consider an idealized problem in which all
the pores are cylinders of the same radius. We suppose that the pores are partially filled
with a liquid in contact with its own vapor and assume furthermore that the walls of
the pores are completely wetted by the liquid. So long as the menisci are away from the
mouths of the pores, all the menisci will have hemispherical surfaces of radius r. The
vapor pressure in the pores is given by eq. (9.104) and is less than pg. Consequently,
liquid can exist in a porous medium in equlibrium with superheated vapor. If the vapor
pressure is increased slightly, condensation will occur in all pores in which the meniscus
has not yet reached the mouth of the pore; further condensation would result in an
increase of the radius of curvature of the surface. Condensation in this pore therefore
ceases when the radius of curvature reaches the equilibrium value corresponding to the
vapor pressure. Thus condensation will proceed in the partially filled pores and be halted
in the filled pores, until a point is reached at which all the pores are similarly filled and
the liquid in them has everywhere the radius of curvature corresponding to the vapor
pressure. Further increase in the vapor pressure results in condensation in all the pores
and the flattening of the menisci, which become plane when p” = po. The vapor is now
saturated and any further increase in p” is immediately offset by condensation of bulk
liquid.

This reduced vapor pressure when the vapor is on the concave side and the increased
vapor pressure when the vapor is on the convex side may be related to some technologies
being used in nanowire growth. One method developed, for example, is to condense
vapors of materials onto a template (Heremans et al., 2000), such as anodized alumina,
that can have channels with a diameter in the range of 10-200 nm. In this case, the
Kelvin relation suggests that the vapor pressure inside the channels may be lower than
that of the bulk saturation pressure and thus even superheated vapors may condense in
very small channels. Another example is the vapor-liquid—solid growth of nanowires in
free space (Morales and Lieber, 1998). In this case, vapor condenses on convex surfaces
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which may have a higher vapor pressure that favors the growth of wires with bigger
diameters. These possibilities, however, have not been studied experimentally, nor fully
exploited in the control of nanowire growth.

9.4.2 Curvature Effect on Equilibrium
Phase Transition Temperature

We now examine the size dependence of the equilibrium phase transition temperature.
For this purpose, we will assume that the external pressure is constant, that is, d p'=0
in eq. (9.98). In the case of droplets, we can subtract eq. (9.98) from (9.99) to obtain

Ah " "
—-dT +v"dp" =0 (9.105)
where Ah = T(s’ — s”) is the latent heat. Substituting eq. (9.105) into (9.97) leads to
dT v 2y
L ISR P (sl
T ~h ( - ) (9.106)
Integrating the above equation from r — oo (T = Tp) tor, we obtain
T 2y V'
In—=-="— :
n T s (9.107)

This shows that the equilibrium temperature of small droplets is lower than that of a flat
interface.

If, instead of droplets, bubbles are formed inside liquid under a constant liquid
pressure, a slightly more complicated derivation, due to the compressibility of the vapor
phase, leads to (Defay et al., 1956)

- 2 /
a1 N i D, (9.108)
To T p

where AJ is the average latent heat in the range between To and T. It should also be
pointed out that the latent heat can also be size dependent and could be analyzed on the
basis of the same sets of equations [see Defay et al. (1956) for details]. Equation (9.108)
shows that the equilibrium temperature of small vapor bubbles must be higher than the
normal phase transition temperature To, which explains the existence of superheated
liquid.

9.4.3 Extension to Solid Particles

A similar analysis can be extended to small solid particles by replacing the liquid with
the solid properties. Such an extension leads to the following conclusions:

1. The vapor pressure of small crystals is greater than that of large crystals. In the
presence of vapor, large crystals will grow at the expense of smaller crystals. .
2. Small crystals melt at a temperature lower than the bulk melting point. The melting

point T of a small crystal is given by

st
i e o o e L (9.109)
TO r Ahse
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where Tp is the normal melting point at the same external pressure, y*¢ is the
interfacial tension at the solid-liquid interface, vy is the molar volume of the solid,
and Ah,, is the heat of fusion. A well-established example is the lowering of the
melting point of gold nanoparticles, as shown in figure 9.18 (Buffat and Borel,
1976).

3. The melting point of a substance solidified in the pores of an inert material will
depend on the size of the pores. For a more detailed discussion, see Defay et al.
(1966).

4. Small crystals may have a heat of fusion and a heat of sublimation smaller than the
value for bulk solid.

9.4.4 Curvature Effect on Surface Tension

The size dependence of surface tension has been under investigation since Gibbs (1928)
but still remains a topic of debate. Tolman’s (1949) work is a classic in this field.
The Tolman theory treats a single-component system with two phases and uses the
same set of equations (9.97)-(9.100). Considering a droplet at constant temperature,

we have
2)’ U/ _ U//
Al 2N e e "
( p ) = dp (9.110)
or
2 1 v =
Zd ) o) = "
2 A yd(r) 7 dp (9.111)
To eliminate dp”, we use eq. (9.100),
dy = —Tdu; = —-Tv"dp” (9.112)
From egs. (9.111) and (9.112), we obtain
B e B 9.113
vy @U/n+p) -0 (?> A

where p/; and p); are the densities of the two phases.
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For a liquid droplet, p); (the vapor side) is negligible and eq. (9.113) can be integrated
to give

vo 1

w T QT i)

where Y is the surface tension for a flat surface. Equation (9.114) shows that the surface
tension of a droplet decreases with decreasing droplet diameter. For a vapor bubble
inside a liquid, p; (the vapor side) is negligible and eq. (9.113) leads to

o

v 1= @ =)

and thus the surface tension increases with decreasing bubble diameter. The above
expression can also be generalized as

o), 1

” ~ l—m (9.116)

where 67 ~ I'/ (pg - p(’j) is called the Tolman length. It is interpreted as the distance
between equimolar surface, where the densities of the liquid phase and the vapor phase
are equal, and the surface of the tension. A more accurate expression was given by
Tolman (1949).

Typically, the Tolman length is short. Molecular dynamics simulation by Haye and
Bruin (1994) found that for the Lennard-Jones potential, 87/ = 0.2 £ 0.05. Since in
the Lennard-Jones potential o is only a few angstroms (3.542 A for argon), 87 is very
small, so that the effect of radius on surface tension is negligible in most situations.
The size dependence of surface tension is of great interest to nucleation theory and has
received most attention in this field (Laaksonen et al., 1995). Typically, it is found that
the Tolman length is a function of radius and temperature and thus the original theory
by Tolman is often modified and revisited (Kalikmanov, 1997; Granasy, 1998).

9.5 Summary of Chapter 9

Because the liquid molecules are closely packed and lack long-range correlations as
in crystalline solids, conventional kinetic theory, which is based on the assumption of
dilute particles and infrequent interaction among the particles, is not applicable to liquid
systems. This difficulty has prevented us from pursuing a treatment of the transport
processes in liquid parallel to what we have done for gaseous molecules, electrons,
phonons, and photons in previous chapters. This chapter attempts to provide an overview
of theoretical tools for studying transport in liquids and key aspects of the interfaces
between liquids and their surroundings.

We started with a review of theoretical tools that treat transport in bulk liquids. The
radial distribution function provides a useful description of the structure of a liquid and
we used it to derive the van der Waals equation of state, which captures the vapor, the
liquid, and the liquid-vapor coexisting regions, at least qualitatively. For transport in
liquid, one effort is the extension of Boltzmann’s kinetic theory for gases to higher
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densities. The Enskog equation is an example. This equation includes the effects of the
finite size of the molecules and, implicitly, the potential energy exchange. The solutions
of the Enskog equation for dense gas, however, are not valid at liquid densities. Einstein

started a different line of investigation—Brownian motion in liquids. The major result of

his investigation was to relate viscosity to the diffusivity of Brownian particles, which
provides a means of estimating the size of Brownian particles (and big molecules).
Einstein’s work laid the foundation for the later development of linear response theory,
which has a much broader impact than just liquid transport. The linear response theory
applies equally well to all other transport processes we have discussed in this book so far.
We have reserved the linear response theory for the next chapter and, instead, discussed
only the Langevin equation. This equation generalizes Brownian motion by splitting
the forces acting on a Brownian particle into a resistive term that is proportional to the
particle velocity and a random force term that arises from the particle interacting with the
surrounding. Although Brownian motion is discussed in the context of particle transport
in a liquid, it is a very general phenomenon and has found applications in many different
fields. We noted that many studies on transport in fluids are based on linear response
theory, which also rely heavily on direct computer simulation; hence the reason that we
delay further discussion to the next chapter.

Because potential interaction, with its associated momentum and energy exchange, is
an important part of transport in liquid, we next turned our attention to the potentials at
the interfaces of the liquid and its surroundings: liquid-solid, liquid—vapor, and liquid-
liquid interfaces. These interfacial potentials play a central role in surface chemistry
and colloids, and have been extensively studied. However, their impacts on momentum
and energy transport processes have yet to be fully explored. The interfacial potentials
between surfaces can be constructed from the individual atomic and molecular potentials.
These interfacial potentials were discussed under three categories:

1. The van der Waals potential (also called London potential or dispersion potential),
which usually leads to an attractive force between surfaces separated by a vacuum.
The van der Waals potential can also be repulsive, depending on the medium
between the two surfaces, and is characterized by the Hamaker constant.

2. The electric double layer potential, formed as a result of the existence of surface
charges and leading to a repulsive force between two surfaces separated by the
liquid.

3. The potentials and forces arising from molecular structures near the interface,
such as the oscillatory solvation force due to the regular molecular arrangement
near a solid surface, the hydration force between hydrophilic surfaces (repulsive)
and hydrophobic surfaces (attractive), the steric force due to the overlapping of
long molecules (important in polymer systems), and the fluctuation force due to
molecular protrusion at mobile surfaces and random thermal fluctuation.

The van der Waals force usually decays as D" (table 9.1), where D is the separation
between surfaces. The electric double layer decays exponentially and its characteristic
length is the Debye length, which also depends on ion concentration and thus can
be controlled, while the molecular structure forces are typically active within a few
molecular diameters of the interface (a few nanometers). From the interfacial potential,
one can easily appreciate the concept of surface tension, a key phenomenon for micro-
and nanosystems, where the inertial force is normally unimportant and the surface force
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dominates as the surface-to-volume ratio increases with decreasing size. The Laplace
equation determines the shape of an interface and the Young equation determines the
contact angle between a liquid droplet and a solid surface.

In section 9.3, we discussed the effects of size on single-phase liquid transport. There
have been many studies on fluid flow and heat transfer in microchannels, but the results
have been controversial. Size-dependent viscosity has been reported. Similarly, there
exist reports on the deviation of heat transfer in microchannels from the continuum
theorem. We caution that these data must be viewed critically. The monumental experi-
mental work of Poiseuille, on fluid flow, which is almost 180 years old, was performed
in glass tubes with inner diameter 15 m and above. Yet his data can be explained by
the continuum theory. This fact strongly indicates that discrepancies from more recent
experiments in microchannels of comparable diameter, when compared with continuum
theory, may not be due to the breakdown of the continuum theory but to the differences of
experimental conditions and models used. We also note that, at the other extreme, there
have been some studies on liquid transport in nanostructures, mostly based on molecular
dynamics simulations. Because the interfacial forces discussed in section 4.2 have an
active range from a few nanometers to tens or even hundreds of nanometers, these forces
may impact the heat transfer and fluid flow processes in nanostructures. Thisis adirection
that calls for more exploration, perhaps with a combination of simulation and modeling
tools. In comparison with pressure-driven flow, however, electrokinetic flow, which is
due to the existence of the electric double layer, has been well studied. Two basic motion
configurations were discussed: electrophoretic flow due to the motion of the particles,
and electro-osmotic flow due to the motion of the ionic solution. Such electrokinetic
driven flows are widely used in biotechnology and have also found increasing use in a
variety of microfluidic devices.

In the last section, we discussed the size dependence of thermodynamic properties
of small particles, such as the phase transition pressure, temperature, and surface
tension. The results have been well established but are finding new applications in
nanotechnology. '

9.6 Nomenclature for Chapter 9

a  constant, eq. (9.6),] m’ e unit charge, C

A Hamaker constant, J 4 electric field, Vm™!

A; surface area, m? f one-particle distribution .

b volume defined by function for molecules, m™
eq. (9.23), m? @  two-particle %istribution

B volume per molecule, m3 functlop, m“' o

¢ charge concentration on surface, f®) N-particle distribution
Cm™2 function

C  coefficient in the atom-atom F Helmholtz free energy, J;
pair potential, J m’ force, N

D effective diameter of Fp drag for.ce,’N .
molecule or spacing between g radxal‘ distribution
surfaces, m function, eq. (9.1)
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Planck constant, J's
height, m

particle number flux, A s
thermal conductivity,
Wm ! K™!

mass, kg

particle or atom number
density, m™3

refractive index

total number of particles
pressure, N m™2

particle momentum, kgms™
charge, C

charge, C

volumetric flow rate, m

1

3.o—1

s
radius, radial coordinate, or
radial separation between
particles, m

position vector, m

random driving force in
Brownian motion, N
entropy per mole, J K~ mol™!
time, s

temperature, K

Brownian particle velocity or
drift velocity, ms™!

volume per mole, m3 mol ™!
work, J

cohesion energy between two
identical surfaces, J m ™2
adhesion energy between two
different surfaces, J m™2
canonical partition function, or
number of net elementary
charge per ion

electric polarizability,
C’mN-!

electric dipole moment, C m
surface tension, J m~2 or
Nm™!

number density of molecules at
the Gibbs surface, m—2

Debye length, m

Tolmann length, m

enthalpy or latent

heat, J mol ™!

&

€0

pd
Pn

= 9y O

Lennard-Jones potential
parameter, J

dielectric permittivity of
vacuum, C2 N~ m~2
dielectric constant

zeta potential, V

friction coefficient, s~!
Boltzmann constant, J K~!
dynamic viscosity,
Nsm™?

quantity defined by eq. (9.21),
kgm™3s~

mass density, kg m3

net charge density, C m~3
Lennard—-Jones potential
parameter, m

volumetric fraction of
Brownian particles in a
solution

potential energy between
particles, J

total potential energy, J
electrostatic

potential, J c!

solid angle, srad

unit vector connecting two
colliding molecules

Subscripts

flat surface, far away
dispersion force

Enskog model

surface

Xx-component

when surface potential is zero

Superscripts

outside the spherical surface,
convex side

inside the spherical surface,
concave side

Symbol

ensemble or time averaging
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9.8 Exercises

9.1 van der Waals equation of states—critical point and the corresponding states.
The critical point of a liquid is where the D and E points in figure 9.2 coincide
with each other. This is an inflection point (point where both the first-order and
the second-order derivatives are zero) on the constant T curve ina p-V diagram.

(a) Start from the van der Waals equation, and demonstrate the critical temperature
T, and pressure p¢
8a a
Te= 35 ™ b= 72

(b) Show that the van der Waals equation can be written as

8T, 3

pr=3v,—1——

2
where pr = p/pe, Tr = T/T,, and v, = V/ V.. Thus, in this normalized form,
the equation of states is independent of the actual fluids. This is called the law of
corresponding states.

9.2 Saturation pressure. The saturation pressure, line A and B in figure 9.2 can
be found by requiring that the chemical potentials of the liquid and the vapor
phases are equal to each other. Derive a relation between the saturation pressure
and temperature for a van der Waals liquid.

9.3 Enskog equation. Argon gas at low density and 300 K has a thermal conductivity
of 0.018 Wm™! K-!. Estimate its thermal conductivity as a function of density
at higher density. In what range do you expect this estimation to be valid?

9.4 Einstein relation. The viscosity of water at 300K is4 x 107 Nsm ~2 and the
diffusivity of monodisperse Brownian particles in water is 1.1 % 101! m2s71.
Estimate the diameter of the particle.

9.5 Viscosity of nanofluids. ‘ .
(a) The viscosity of water is 4 x 1074 Nsm~2, Nanoparticles are seeded into

water with a volume concentration of 5%. What is the viscosity of the nanoparticle-
loaded fluid according to the Einstein theory?

(b) The Einstein theory is based on the assumption of dilute particle.s such that
interparticle interactions can be neglected. Estimate the interparticle dxstgnce for
a 5% volume loading as a function of the nanoparticle diameter, assuming that
nanoparticles are monodisperse.

9.6 Van der Waals potential between w0 nanowires. Carbon nanotubes and
nanowires can be grown into aligned and closely spaced densg arrays
[see figure 1.4(c)]. Estimate the van der Waals potential and the attractive force

n two parallel silicon nanowires of equal diameter (10 nm)

er unit length betwee
s y = 15 56 JO~75 Tin®; The

with a center-to-center spacing of 20 nm. Assume C
silicon lattice constant is 5.2 A
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Debye length. Estimate the Debye length in water containing 0.01 mole of NaCl.
The dielectric constant of water is 78.54.

Liquid helium and disjoining pressure. It is known that if liquid helium is placed
in a beaker, it rapidly climbs up the walls and down the other side, and eventually
leaves the container. This is caused by a negative Hamaker constant between the

helium vapor and the container wall. . o
(a) Show that the liquid helium film varies as a function of its thickness,

R @ >1/3
N 6rpgH

(b) The Hamaker constant between helium vapor and the container, made of

CaFy, is —0.59 x 10~20 J. Estimate the liquid helium film height at a thickness of
D = 2 nm. The density of liquid helium is 125 kg m™>.
Capillary rise of liquid in a tube. In a small tube inserted into a liquid bath, the
liquid rises above the height of the bath surface due to the surface tension if the
contact angle is less than 90° (figure P9.9). Show that the height of the liquid
column is

_ 20.co0s 0
(o1 = pv) 8T
where p; and p, are the density of the liquid and its vapor and r; is the inner

radius of the capillary tube. For glass tubes with ; = 10 wm, 100 pm, and
1 mm, estimate the heights of water inside the tube (y = 72.8 mNm™!)

Figure P9.9 Figure for l
exercise 9.9.

9.10 Electrokinetic flow. Consider fully developed electro-osmotic flow between two

9.1

parallel plates, assuming that the Debye thickness is much smaller than the
separation of the two plates. Use the Hiickel-Debye approximation to find the
electric double layer potential distribution,

(a) Develop an expression for the velocity distribution within the electric
double layer.

(b) Assuming that a constant heat flux is applied to the fluid on both surfaces and
the thermal profile is fully developed, derive an expression for the Nusselt number.
Effects of radius on water droplet surface tension and saturation vapor pressure.
For water, taking 9.6 A? as the surface area occupied by a water molecule on
the surface of tension, half of the monolayer concentration is I' = 0.9 x 107°
mol cm™2. The liquid phase density is p” = 5.55x 10~2 mol cm™3. Calculate the
surface tension and the saturation vapor pressure of water droplets as a function
of the diameter in the range of r = 1072-107° m.
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9.12 Effects of radius on water vapor bubble surface tension and saturation vapor

pressure. Using the same data as in exercise 9.11, calculate the surface tension
and the saturation vapor pressure of a water bubble inside water as a function of
its diameter in the range of r = 107107 m.

9.13 Melting temperature of Au nanoparticles. The surface tension between liquid

and solid gold is 0.27 Nm~!, and its latent heat is 6.27 x 10* Jkg~!. Estimate
the melting temperature of gold nanoparticles as a function of their radius. The
melting point of bulk gold is 1064.43°C.

9.14 Bismuth condensation into anodized alumina template. Consider the conden-

sation of bismuth vapor onto an anodized alumina template with cylindrical
channels. The channel diameter is between 5 and 20 nm. Comment on the filling
process of superheated bismuth vapor into the channel. The surface tension of
bismuth is 378 x 1073 Nm™! at melting point 271°C.





